5.1 ACIDS AND BASES

Many familiar compounds are acids or bases. Classification as acids or bases is based on

·
• Acids and bases can be very dangerous.
• Both can be very
NEVER try to identify an acid or base by
or!
• The strength of acids and bases in measured on the scale.
pH below 7 =, pH above 7 =, pH 7 =
 • 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
 Each decrease of 1 on the pH scale indicates more acidic (logarithmic scale)
For example, pH 4 is times more acidic than pH 5.
pH 3 is times more acidic than pH 6.
The pH of acids and bases cannot be determined by
Instead, pH is measured by other chemicals called or
by a pH meter that measures the of the solution.
pH change based on the solution they are placed in.

_____ is the most common indicator, and is used on

_____ paper.

Two colours of litmus paper: _____= basic and

_____= acidic.

Blue = pH _____7, Red = pH _____7.

______ contains many indicators that turn different colours at different pH values (can be in liquid form, or on paper strips like litmus).

A ______uses electrical probes to measure how solutions conduct electricity.

Indicators change colour at different pH values, so different indicators are used to identify different pH values.

Bromothymol blue for pH 6 - 7.6, phenolphthalein for pH 8.2 - 10.

Many natural sources, such as beets and _____, are also indicators.

If you know a compound's chemical formula, you may be able to identify whether it as an acid.

Acids often behave like acids only when _____

Therefore, acids often are written with symbol (aq) = aqueous = water.

The chemical formula of an acid usually starts with _____

Acids with a carbon usually have the C written first.

$HCl_{(aq)} = hydrochloric acid, HNO_{3(aq)} = nitric acid, CH_3COOH_{(aq)} = acetic acid$
Naming acids Hydrogen + <i>ide</i> =
HF _(aq) = hydrogen fluoride =
Hydrogen + \dots - <i>ate</i> = \dots <i>ic</i> acid
$H_2CO_{3(aq)} = hydrogen carbonate =$
Hydrogen + <i>ite</i> = <i>ous</i> acid
$H_2SO_{3(aq)} = hydrogen sulphite =$
If you know a compound's, you may be able to identify it as a base.

Bases often behave like bases only when dissolved in water.

Therefore, bases are often written with the symbol (aq) = aqueous = water.

The chemical formula of a base usually ends with _____

Bases can be gentle or very caustic.

Examples of common bases:

- ◆ NaOH_(aq)
- ◆ Mg(OH)_{2(aq)}
- ◆ Ca(OH)_{2(aq)}
- NH₄OH_(aq)

Acids release	
Bases release	
The pH of a solution refers to the	_of ions
Square brackets are used to signify concentration, $[H^+]$, [O	H-]
High $[H^+] = l_{$	
High $[OH^-] = \pH$, very	
A solution cannot have BOTH high $[H^+]$ and $[OH^-]$; they c	cancel

each other out and form water. This process is called_____.